

PRODUÇÃO DE RÚCULA COM DIFERENTES DOSAGENS DE CAMA DE AVIÁRIO

Paulo Henrique Oliveira Roman¹, Carlos Roberto Moreira², Jessica Cristina Urbanski Laureth³

RESUMO

O objetivo do trabalho foi avaliar a produtividade da cultura de rúcula em função da adubação com diferentes dosagens de cama de aviário. O delineamento experimental foi em blocos casualizados, com cinco tratamentos e quatro repetições. Os tratamentos foram constituídos em doses de cama de aviário: 0, 1, 2, 4 e 6 t ha⁻¹. Foram analisadas altura das plantas, massa fresca da parte aérea e contagem do número de folhas. As médias foram comparadas pelo teste de Tukey (p<0,05), sendo ajustadas equações de regressão às variáveis avaliadas em função dos tratamentos. Os resultados mostraram que os tratamentos diferem seus valores, conferindo menor produtividade para testemunha e maior para a adubação de 6 t ha⁻¹.

PALAVRAS-CHAVE: Eruca sativa, Adubação orgânica, Produtividade.

1. INTRODUÇÃO

Produtores brasileiros plantam cerca de 800 mil hectares de hortaliças, com uma produção de 16 milhões de toneladas, a horticultura ainda gera cerca de 2,4 milhões de empregos e tem renda de aproximadamente oito milhões de reais (HORA; GOTO; BRANDÃO FILHO, 2004).

A Rúcula (*Eruca sativa*) pertencente à Família *Brassicaceae*, ganhou espaço nos canteiros dos produtores devido a sua fácil adaptabilidade, rápido crescimento e ao aumento de consumo pela população por ser muito utilizada na culinária, principalmente em pizzas, sanduíches e saladas. A planta é originaria do Mediterrâneo e suas folhas são fonte de vitamina C e ferro (MATHIAS, 2015).

A rúcula vem se destacando dentre as hortaliças pela sua composição nutricional e pelo sabor picante e odor agradável. No entanto, são escassos os estudos sobre o uso de cama de aviário na cultura (OLIVEIRA *et al.*, 2010).

Além do lado econômico devido aos altos valores dos fertilizantes minerais e a crescente poluição ambiental, tem tornado o uso de resíduos orgânicos na agricultura como uma alternativa para prevenir futuros impactos ambientais, melhorando a ciclagem de nutrientes e aumentando a fixação de carbono, reduzindo os gases de efeito estufa, reduzindo assim, o uso dos recursos naturais (SILVA; VILAS-BOAS; SILVA, 2010). Tais preocupações tem gerado aumento de pesquisas para determinar a viabilidade técnica e econômica desses resíduos (MELO; SILVA; DIAS, 2008).

A utilização em excesso de dosagens de fertilizantes minerais no cultivo de olerícolas atrapalha o processo produtivo, além de desencadear um desequilíbrio ambiental (FREITAS *et al.*, 2010). Uma alternativa para redução dos insumos é a utilização de adubação orgânica oriunda de estercos de animais e compostos orgânicos, de diferentes origens, no cultivo de hortaliças em muitas propriedades agrícolas.

A mistura chamada de "cama" é o resultado de uma junção de fezes de aves, penas e sobras de ração. Os subprodutos industriais e os restos das culturas implantadas nas lavouras são os substratos mais utilizados na atualidade, como por exemplo, a maravalha (resíduos de madeira que sobram das indústrias); sabugo de milho triturado; casca de arroz; palhadas de culturas em geral; fenos de gramíneas e cascas de amendoim. Sua composição química varia de acordo com o substrato, densidade de aves, tipo de alimentação, manejo da cama, tempo de armazenagem e altura da cama (ARAÚJO; NETO; SUNDFELD, 2007).

A cama de frango pode ser utilizada na agricultura como adubo orgânico de alta qualidade em nutrientes (N, P_2O_5 e K_2O), o material orgânico deve ser incorporado ao solo para se obter maior eficiência no uso do fósforo e evitar perdas de nitrogênio por volatilização de amônia. Recomenda-se a aplicação no dia do plantio ou o mais próximo dele. (AVILA; MAZZUCO; FIGUEIREDO, 1992). O uso da cama deve ser em uma quantidade suficiente para a cultura implantada, onde o excesso significa sobra de nutrientes no solo e elevado risco de poluição (EMBRAPA, 2008).

Heredia Zárate et al. (2005) relatam o estudo produtivo da cebolinha, em função da cama de aviário, incorporada (0,7 e 14 t ha⁻¹) ou em cobertura do solo (0,7 e 14 t ha⁻¹), com colheitas aos 60 e 95 dias após o plantio. Observaram que houve aumentos significativos de 21,4 e 79,8% de massa fresca e de 18,2 e 54,8% de massa seca das plantas cultivadas em solos com 14 t ha⁻¹ de cama de aviário sem cobertura do solo, respectivamente, em relação às cultivadas com 7 e 0 t ha⁻¹.

Silva, Cavalcante e Neto (2009) estudando as mudas de rúcula em bandejas com substratos a base de resíduos orgânicos, analisaram que o tratamento composto por cama de aviário + casca de arroz carbonizada, teve o menor rendimento de massa de matéria seca da parte aérea, raiz e total, quando comparado com substrato comercial, esterco bovino e coprólitos de minhoca.

¹Instituição: Agrônomo formado pelo Centro Universitário da Fundação Assis Gurgacz E-mail: phoroman@hotmail.com

²Instituição: Docente do Centro Universitário da Fundação Assis Gurgacz E-mail: carlosmoreirahbl@gmail.com

³Instituição: Discente de Agronomia do Centro Universitário da Fundação Assis Gurgacz E-mail: jeh_urbanski@hotmail.com

Heredia e Vieira (2003), analisando a produção de milho e inhame sob a influência da adubação com cama de aviário encontraram resultados positivos, isso pode relacionar-se com a incorporação dos restos culturais no solo, que repõem quase 80% do Potássio (K) utilizado pelo milho.

Assim, este trabalho teve como objetivo avaliar a produtividade da cultura de rúcula em função da adubação com diferentes dosagens de cama de aviário.

2. MATERIAL E MÉTODOS

O experimento foi conduzido no Centro de Desenvolvimento e Tecnologias (CEDETEC) localizado no Centro Universitário Assis Gurgacz, situado no município de Cascavel - PR, com latitude 24°56'42" S, longitude 53°30'59" W a uma altitude de 696 m ao nível do mar e realizado de agosto a outubro de 2017.

O solo foi classificado como Latossolo Vermelho Distrófico típico (EMBRAPA, 2006) e o clima como subtropical, com verão quente.

O delineamento experimental foi em blocos casualizados, com cinco tratamentos e quatro repetições. Os tratamentos foram constituídos em: T1 - 1 t ha⁻¹ de cama de aviário (CA); T2 - 2 t ha⁻¹ de CA; T3 - 4 t ha⁻¹ de CA; T4 - 6 t ha⁻¹ de CA; T5 - testemunha - sem CA.

As mudas de rúcula foram produzidas em bandejas de poliestireno expandido com 200 células, contendo substrato comercial Agrinobre TNGOLD®, cultivadas em estufa protegida com sistema de auto irrigação e transplantadas para os canteiros quando estavam com dois pares de folhas completamente desenvolvidas.

A cama de aviário foi retirada do primeiro lote de frangos e seca em galpão ventilado a temperatura ambiente, posteriormente sendo armazenada em sacos plásticos. Conforme os métodos descritos por Tedesco *et al.* (1995) para composição elementar, a cama apresentou valores de 2,91% de N, 2,60% de P, 0,9% de K, 2,4% de Ca, 0,7% de Mg e com 67% de matéria seca.

Os adubos orgânicos foram aplicados um dia antes do transplantio. Cada parcela experimental foi constituída de quatro linhas espaçadas de 0,30 m e 0,80 m de comprimento. Consideraram-se como parcela útil as duas linhas centrais desprezando-se 0,20 m de cada extremidade. Durante a condução do experimento foram efetuadas capinas manual e irrigação também manual conforme a necessidade da cultura.

A colheita foi realizada 30 dias após o transplantio das mudas, para tanto, foram coletadas aleatoriamente 5 plantas representativas de cada parcela útil, e se analisou a medida da altura de plantas (AP), massa fresca da parte aérea (MFPA) e a contagem do número de folhas (NF).

As plantas foram cortadas rente à superfície do solo, e pesadas para obtenção da produção de massa fresca da parte aérea (MFPA). A altura de plantas (AP) foi avaliada usando uma régua, a partir do nível do solo até a extremidade das folhas mais altas. O número de folhas por planta (NF) foi contado às folhas maiores que cinco centímetros de comprimento, partindo-se das folhas basais até a última folha aberta.

Os dados foram submetidos à análise da variância e posteriormente comparados pelo teste de Tukey a 5% de probabilidade. Adicionalmente, foram ajustadas equações de regressão para as variáveis avaliadas em função das doses de cama de aviário. As análises foram realizadas através do software estatístico ASSISTAT.

3. RESULTADOS E DISCUSSÃO

A altura das plantas ajustou-se ao modelo linear na análise de regressão (y= 1,438x+13,697, R²= 0,9747). Quanto maior a dose da cama de aviário, maior a altura das plantas.

O número de folhas das plantas também se ajustou ao modelo linear na análise de regressão (y=1,7138x+16,474, $R^2=0,8846$). Quanto maior a dose da cama, maior a produção de folhas das plantas (Figura 2).

A massa fresca da parte aérea ajustou-se ao modelo linear na análise de regressão $(y=3,4901x+15,236,\,R^2=0,9768)$, do mesmo modo que a altura e o número de folhas das plantas. Quanto maior a dose da cama, maior a massa fresca da parte aérea das plantas de rúcula (Figura 3).

Avaliando os resultados da análise de altura de plantas (AP), número de folhas por planta (NF) e massa fresca da parte aérea (MFPA) das plantas de rúcula adubadas com cama de aviário no teste de Tukey, observa-se que houve diferença significativa entre todos os tratamentos (Tabela 1).

Tabela 1 – Altura de plantas (AP), número de folhas por planta (NF) e massa fresca da parte aérea (MFPA) das plantas de rúcula em função das dosagens de cama de aviário.

de racata em ranção das dosagens de cama de aviario.			
Tratamentos	AP (cm)	NF (unidades)	MFPA (g)
T1	14,67 d	19,85 b	19,00 d
T2	17,19 c	21,15 b	24,27 c
T3	20,03 b	22,30 b	28,56 b
T4	21,81 a	26,75 a	35,87 a
T5	13,48 d	14,60 c	13,85 e
CV%	3,28	7,74	5,22

Médias seguidas de mesma letra não diferem estatisticamente entre si, pelo teste de Tukey a 5% de significância.

Em relação a AP de plantas de rúcula, apenas os tratamentos T1 e T5 não diferiram estatisticamente entre si, porém foram diferentes em relação ao T2, T3 e T4. O melhor rendimento de AP foi obtido no tratamento (T4) com 6 ton ha⁻¹ que foi 21,81 cm (Tabela 2). Zárate *et al.* (2006) estudando a produção de rúcula, com e sem cobertura do solo com cama-de-frango, observaram um aumento na altura de plantas da ordem 9 cm por planta de rúcula no tratamento com cobertura, obtendo-se na pesquisa uma diferença parecida de 8,33 cm de altura entre os tratamentos T3 e T4.

No caso do NF a testemunha (T5) novamente se diferencia negativamente dos outros tratamentos. T1, T2 e T3 se mantiveram estatisticamente iguais e o tratamento mais adubado (T4) se difere dos demais com a maior quantidade de folhas que foram 26,75 (Tabela 2). Figueiredo *et al.* (2007) trabalhando com vários tipos de compostos orgânicos na adubação de rúcula observaram que o tratamento com composto de frango foi aquele que proporcionou um aumento da ordem de 10 folhas por planta, o que se mostra evidente no trabalho, a aplicação de cama de aviário tem relação direta com o aumento da quantidade de folhas, podemos observar que entre T5 (tratamento não adubado) e T4 (tratamento com maior adubação, 6 ton ha⁻¹) se obteve uma diferença de 12,15 folhas.

A MFPA diferiu entre todos os tratamentos, provando assim que a cama de aviário influi muito no peso, ou seja, produtividade da cultura da rúcula. Tendo como menor peso a testemunha (T5) e maior peso o tratamento com 6 ton ha (T4). Zarate *et al.*, (2006) cultivando a rúcula com e sem cobertura de solo com cama de frango, observaram acréscimo da ordem de 7,1 Mg ha na massa verde de rúcula, comparando T4 com T5 obteve-se uma diferença de 14,31 Mg ha de peso de massa verde.

Segundo Fontanétti *et al.* (2006), a absorção dos nutrientes, advindos da mineralização dos adubos orgânicos pelas hortaliças depende em grande parte, da sincronia entre a decomposição e mineralização dos resíduos e a época de maior exigência nutricional da cultura.

5. CONCLUSÕES

Pode-se concluir que a cama de aviário tem grande influência na produtividade da cultura da rúcula, pois quanto maior a dosagem utilizada, maiores os resultados de produção em todas as avaliações (altura de planta, número de folhas e massa fresca da parte aérea). Sendo mais indicado o tratamento com 6 ton ha⁻¹ de cama de aviário.

Sugere-se, em trabalhos futuros, avaliar a produtividade da rúcula em maiores quantidades de cama de aviário.

6. REFERÊNCIAS

ARAÚJO, F.; NETO, P.; SUNDFELD, M. Cama de frango na alimentação animal, 2007. Disponível em: https://pt.engormix.com/pecuaria-corte/artigos/cama-de-frango-na-alimentacao-animal-t36715.htm. Acesso em: 21 mar. 2017.

AVILA, V.S.; MAZZUCO, H.; FIGUEIREDO, E.A.P. **Cama de aviário**: materiais, reutilização, uso como alimento e fertilizante. Concórdia, SC: EMBRAPA-CNPSA, 1992. 38p. (EMBRAPA-CNPSA. Circular técnica, 16).

EMBRAPA – Empresa Brasileira de Pesquisa Agropecuária, **Sistema brasileiro de classificação de solos**, Rio de Janeiro: Cnpso, 2006.

EMBRAPA – Empresa Brasileira de Pesquisa Agropecuária, **Manejo ambiental da cama de aviário**. 1 ed. Concórdia, Versão Eletrônica, set. 2008.

FIGUEIREDO, B.T.; CHAVES, A.M.S.; ARAÚJO, J.R.G.; MOREIRA, C.F.; FARIAS, A.S. Produção de rúcula (*Eruca sativa* L.) cultivada em composto de esterco da ave e bovino puros e incorporados ao solo. **Revista Brasileira de Agroecologia**, 2:851-854, 2007.

FONTANÉTTI, A; CARVALHO, G.J.; GOMES, L. A.A; ALMEIDA, K; TEIXEIRA, C.M. Adubação verde na produção orgânica de alface americana e repolho. **Horticultura Brasileira**, 24:146-150, 2006.

FREITAS, G.A.; SANTOS, L.B.; SIEBENEICHLER, S.C.; NASCIMENTO, I.R.; SILVA, R.R.; CAPONE, A. Resíduo de efluente de frigorífico bovino como fertilizante alternativo para a produção de rúcula. **Pesquisa Aplicada & Agrotecnologia**, 3:39-44, 2010.

HEREDIA ZÁRATE, N.A.; VIEIRA, M.C. Produção do milho doce cv. Super Doce em sucessão ao plantio de diferentes cultivares de inhame e adição de cama-de-frango. **Horticultura Brasileira**, 21:05-09, 2003.

HEREDIA ZÁRATE, N.A.; VIEIRA, M.C.; ONO, F.B.; SOUZA, C.M. Produção e renda bruta de cebolinha e de coentro, em cultivo solteiro e consorciado. **Semina: Ciências Agrárias**, 26:141-146, 2005.

HORA, R.C.; GOTO, R.; BRANDÃO FILHO, J.U.T. In: Agrianual 2004: Anuário estatístico da agricultura brasileira. **O lugar especial da produção de hortaliças no agronegócio**. São Paulo: FNP, 2004. p.322-323.

MATHIAS, J. **Como plantar Rúcula**, 2015. Disponível em: http://revistagloborural.globo.com/GloboRural/0,6993,EEC1698654-4529,00.html>. Acesso em: 21 mar. 2017.

MELO, L.C.A.; SILVA, C.A.; DIAS, B.O. Caracterização da matriz orgânica de resíduos de origens diversificadas. **Revista Brasileira de Ciência do Solo**, 32:101-110, 2008.

OLIVEIRA, E.Q.; SOUZA, R.J.; CRUZ, M.C.M.; MARQUES, V.B.; FRANÇA, A.C. Produtividade de alface e rúcula, em sistema consorciado, sob adubação orgânica e mineral. **Horticultura Brasileira**, 28:36-40, 2010.

SILVA, B.J.L.; CAVALCANTE, S.S.A.; NETO, A.E.S. Produção de mudas de rúcula em bandejas com substratos a base de resíduos orgânicos. **Ciência Agrotecnologia**, 33:1301-1306, 2009.

SILVA, F.A.M.; VILAS-BOAS, R.L.; SILVA, R.B. Resposta da alface à adubação nitrogenada com diferentes compostos orgânicos em dois ciclos sucessivos. **Acta Scientiarum Agronomy**, 32:131-137, 2010.

TEDESCO, M.J.; GIANELLO, C.; BISSANI, C.A.; BOHNEN, H.; VOLKWEISS, S.J. **Análise de solo, plantas e outros materiais**. 2ed. Porto Alegre: Departamento de Solos, UFRGS, 1995. 174 p. (Boletim Técnico, 5).

ZÁRATE, N.A.H.; VIEIRA, M.C.; GRACIANO, J.D.; GASSI, R.P.; ONO, F.B.; AMADORI, A.H. Produção de cebolinha, solteira e consorciada com rúcula, com e sem cobertura do solo com cama-de-frango. **Ciências Agrárias**, 27:504-514, 2006.