

RESISTÊNCIA DA BUVA (Conyza spp.) A HERBICIDAS

Mateus Normelho Krampe¹, Pedro Henrique Damian Grigolo², Raimundo Carneiro Dias Neto³, Ana Paula Morais Mourão Simonetti⁴

RESUMO

Na região oeste do Paraná, a resistência da buva (*Conyza* spp.) a herbicidas se tornou uma preocupação crescente devido ao uso intensivo desses produtos ao longo do tempo. A resistência é um fenômeno natural que ocorre quando as plantas daninhas são expostas repetidamente a um mesmo herbicida, permitindo que algumas desenvolvam mecanismos para sobreviver à sua ação. A Partir disso, esse resumo expandido visa buscar o entendimento sobre essas resistências que a buva vem ganhando. Para a realização deste trabalho foram utilizadas pesquisas ex ploratórias no mês de março de 2024 com levantamento e revisão bibliográfica, ancorado na descrição dos elementos levantados, focando nas seguintes palav ras-chaves: *Conyza* spp., herbicidas, plantas daninhas, resistência e monitoramento. A resistência da buva à herbicidas é um problema crescente, com isso os diversos experimentos montados nos mostram a significância do mesmo. Conclui-seque os resultados dos tratamentos destacam a importância de escolher cuidadosamente os herbicidas e suas combinações para alcançar um controle satisfatório. O estudo evidencia que o uso de herbicidas associados com glyphosate combinado com 2,4-D, chlorimuron ou atrazine, pode ser uma alternativa eficaz para o manejo dessa planta daninha.

PALAVRAS-CHAVE: Conyza spp., Herbicidas, Plantas daninhas, Resistência, Monitoramento.

1. DESENVOLVIMENTO

O controle de plantas daninhas é uma prática fundamental na agricultura para manter a produtividade das culturas e minimizar prejuízos. Elas competem por recursos como água, nutrientes e luz solar, reduzindo assim o rendimento das culturas. Além disso, podem abrigar pragas e doenças, prejudicando ainda mais a produção agrícola.

A buva (*Conyza* spp.), por ter um ciclo de vida anual e como característica, um porte herbáceo (Lorenzi, 2014) e uma alta produção de sementes, é considerada uma daninha de difícil controle. Suas sementes brotam quando as condições de temperatura, luz e umidade são favoráveis (ALBRECHT e ALBRECHT, 2021). A grande dispersão de sementes, o uso excessivo de glifosato e a falta de um preparo de solo correto são alguns fatores que influenciam tanto para a resistência da buva quanto para a sua rápida disseminação (DAUER, MORTENSEN e VANGESSEL, 2007).

A *Conyza* spp., popularmente conhecida como buva, é uma planta daninha que pode atingir desde 60 cm até acima de 2,5 m de altura, comum em regiões sul do Brasil, é uma das espécies daninhas mais importantes nas lavouras do Oeste do Estado do Paraná e que tem causado grandes preocupações e prejuízos aos agricultores dos Estados de Rio Grande do Sul, Santa Catarina e Mato Grosso do Sul. Segundo Adegas *et al.* (2017) os desafios originados pela infestação de buva entre cultivos comerciais afetam uma extensão de cerca de 16 milhões de hectares, o que equivale a quase metade da área destinada ao cultivo de soja no Brasil, a área, com presença apenas de buva resistente no Brasil é estimada em 7,7 milhões de ha, a área, com presença apenas de buva resistente no Brasil é estimada em 7,7 milhões de ha.

A resistência é a habilidade desenvolvida por uma planta ou biótipo para sobreviver a certos tratamentos com herbicidas que, em circunstâncias normais, seriam eficazes contra outros membros da população (Vargas *et al.*, 2007), e no caso da buva, é um fenômeno complexo que resulta da seleção de biótipos resistentes em resposta à pressão seletiva exercida pelos herbicidas.

A resistência dessa planta a herbicidas pode ser atribuída a uma variedade de mecanismos, incluindo mutações no sítio de ação do herbicida, super expressão de enzimas metabolicamente ativas e redução na absorção ou translocação do herbicida na planta. A compreensão dos mecanismos subjacentes à resistência é fundamental para o desenvolvimento de estratégias de manejo eficazes (CHISTOFFOLETI e LÓPEZ-OVEJERO, 2003).

O manejo da resistência da buva a herbicidas requer uma abordagem integrada que combine diferentes táticas de controle. A rotação de herbicidas com diferentes modos de ação e o uso de misturas de herbicidas são práticas recomendadas para retardar o desenvolvimento da resistência. Além disso, o uso de métodos de controle não químicos, como rotação de culturas, controle mecânico e uso de cobertura morta, pode reduzir a pressão seletiva sobre a sua população. A pesquisa contínua é essencial para desenvolver novas tecnologias e abordagens de manejo da resistência da buva a herbicidas. Isso inclui a identificação de novos herbicidas com modos de ação eficazes contra biótipos

¹Instituição: Acadêmico Centro Universitário FAG E-mail: mnkrampe@minha.fag.edu.br

²Instituição: Acadêmico Centro Universitário FAG E-mail: phdgrigo lo@minha.fag.edu.br

³Instituição: Acadêmico Centro Universitário FAG E-mail: rcdneto@minha.fag.edu.br E-mail: anamourao@fag.edu.br

resistentes, bem como o desenvolvimento de técnicas de detecção precoce de resistência e estratégias de monitoramento de populações dessa planta.

Este resumo expandido tem como objetivo fornecer uma visão abrangente das principais descobertas, metodologias utilizadas, resultados obtidos e conclusões tiradas de estudos sobre o desenvolvimento de resistência da buva a herbicidas. Incluindo revisão de literaturas existentes, análises de dados experimentais e discussões sobre implicações para práticas agrícolas e estratégias de manejo de plantas daninhas.

2. METODOLOGIA

A pesquisa bibliográfica torna-se a base para fundamentação do trabalho. Segundo Fontelles *et al.* (2009) a base consiste na análise do material já publicado, esta análise é crucial para a composição da fundamentação teórica, sendo realizada por meio de uma avaliação meticulosa e sistemática de diversos recursos, tais como livros, periódicos, documentos, textos, mapas, fotos, manuscritos e até mesmo materiais disponíveis na internet, entre outros.

A base do levantamento bibliográfico sobre a resistência da buva à herbicida foi realizada por artigos encontrados na plataforma Google Acadêmico no mês de março de 2024. Foram realizadas pesquisas exploratórias com levantamento e revisão bibliográfica, ancorado na descrição dos elementos levantados. Ao todo foram utilizadas 10 pesquisas para composição deste resumo expandido, tendo as seguintes palavras-chaves: *Conyza* spp., herbicidas, plantas daninhas, resistência e monitoramento; sendo estas de mais importância no estudo tratado.

3. DISCUSSÃO

A resistência da buva a herbicidas é um problema crescente que exige uma abordagem holística e integrada para ser enfrentado efetivamente. Conforme Rizzardi *et al.* (2002), ao longo das últimas décadas, foram relatados casos de resistência de plantas daninhas a herbicidas de diferentes grupos químicos, incluindo os inibidores da ALS (acetolactato sintase) e do EPSPs (5-enolpiruvilshiquimato-3-fosfato sintase).

Segundo Albrecht e Albrecht (2021), a região oeste do Paraná foi a pioneira no relato de casos de resistência múltipla de *Conyza* spp. A rápida disseminação da resistência dessa daninha a herbicidas representa um desafio significativo para os agricultores, podendo comprometer a eficácia das práticas de controle de plantas invasoras.

Com o mau uso de moléculas orgânicas para fins biocidas, especialmente os herbicidas, contribuíram para o aparecimento de genótipos de plantas espontâneas resistentes, dentre as quais se encontra a buva, comisso, o estudo da eficiência de herbicidas isolados ou associados no controle de *Conyza bonariensis*, tendo em vista seus aspectos de resistência. Conforme Karam *et al.* (2010), a tabela abaixo traz alguns manejos utilizados no controle da buva.

Tabela 1. Percentual de intoxicação das plantas de buva, nas avaliações 7, 14, 21, 28 e 84 dias após a aplicação em função dos diferentes tratamentos. Sete Lagoas,MG. **2009**.

*Numero seguido de mesma letra na linha não apresenta diferença estatística ao nível de 5% de

Tratamentos	dose (g ha-1) =	% Controle				
		7DAA*	14DAA*	21DAA*	28DAA*	84DAA*
Testemunha	0	0e**	0e	0e	0e	0e
glyphosate	1920	50c	67,5b	65bc	65bc	90a
glyphosate + 2,4 D	1920+806	57,5c	62,5b	70ab	82,5a	98,75a
glyphosate + chlorimuron	1920+15	67,5c	87,5a	82,5a	77,5ab	97,5a
glyphosate + atrazine	1920+1000	40c	45bc	60bc	65bc	96,25a
atrazine + 2,4 D	1500+806	47,5c	45bc	45bc	45cd	82,5ab
paraquat + atrazine	300+1000	57,5c	55c	65bc	55bc	82,5ab
2,4 D	806	55c	55c	60bc	62,5bc	85ab
atrazine	1000	15d	20cd	25cd	23,5de	78,75b
atrazine	1500	20d	30cd	25cd	25de	85ab
paraquat	300	65c	65b	65bc	65cd	72,5b
chlorimuron	15	62,5c	45bc	55bc	42cd	72,5b
ammonium glufosinate	800	86,3a	82,5a	80a	77,5ab	95a

probabilidade pelo teste de Tukey

Fonte: KARAM et al., 2010.

O parâmetro avaliado foi a porcentagem de controle de plantas para a espécie *C. bonariensis* utilizando a escala conceitual da S.B.C.P.D., 1995, como mostra a tabela abaixo:

Tabela 2 Descrição dos valores conceituais aplicado para avaliações visuais de controle aplicados na escala da Sociedade Brasileira da Ciência das Plantas Daninhas, Londrina – PR, 1995.

- Controle excelente. Sem efeito sobre a cultura
- Controle bom, aceitável para a infestação da área.
- Controle moderado, insuficiente para a infestação da área.
- d Controle deficiente ou inexpressivo
- e Ausência de controle.

Fonte: SBCPD, 1995.

Os resultados dos tratamentos apresentados por Karam *et al.*, aos 7 DAA (Dias Após Aplicação), em que apenas o tratamento químico com ammonium glufosinate (800g ha⁻¹), apresentou controle satisfatório. Aos 14 DAA, notou-se que glyphosate + chlorimuron (1920+15g ha⁻¹) e o ammonium glufosinate (800g ha⁻¹) tiveram uma resposta significativa quando comparados aos outros. Aos 21 DAA glyphosate + chlorimuron (1920+15g ha⁻¹) e o ammonium glufosinate (800g ha⁻¹) tiveram uma resposta significativa quando comparados aos outros.os 28 DAA, observou-se que o glyphosate + 2,4 D (1920+806g ha⁻¹) se sobressaíram diante os demais tratamentos. com 84 DAA, observou-se que o glyphosate (1920g ha⁻¹), glyphosate + 2,4 D (1920+806g ha⁻¹), glyphosate + chlorimuron (1920+15g ha⁻¹), glyphosate + atrazine (1920+1000g ha⁻¹), ammonium glufosinate (800g ha-1), obtiveram uma resposta significativa no tratamento.

O emprego de herbicidas associados são alternativas de manejo eficiente, bem como o uso glyphosate associado a 2,4-D, chlorimuron ou atrazine. O manejo eficiente está atrelado ao aperfeiçoamento das combinações de herbicidas empregados no controle de buva, otimizando a eficácia de tratamentos diferentes, aumentando a gama de arranjos alternativos ao controle dessa espécie, auxiliando assimo produtor no controle.

Além do manejo químico da buva, Vargas e Gazziero (2009) apontam que, para evitar a perda no rendimento de grãos e um alto custo para aplicação, o produtor pode optar pelas seguintes práticas de manejo: realizar o cultivo da área no inverno e utilizar a cobertura verde como forma de produção de palhada aliados com o uso de herbicidas e o manejo pré-semeadura. Os autores também mostram a importância do controle da buva nos períodos pré e pós-emergente. Durante a pré-emergência, o uso de herbicidas como diclosulam e sulfentrazona apresentaram controle eficiente no banco de sementes, de buva, presente no solo e acrescem que, quando utilizados na pré-emergência da soja (Glycine max), esses herbicidas garantem um controle residual durante 20 dias.

Vargas e Gazziero (2009), afirmam que, na pós-emergência da soja, o uso de herbicidas à base de chlorimuron ou cloransulam não garante aos produtores um controle eficaz, já que causam somente um efeito supressor na buva, que acaba se recuperando e voltando ao seu ciclo. Mostram também que o uso de herbicidas pós-emergentes associados com glifosato podem gerar fitotoxidade na cultura da soja. Já na cultura do milho (*Zea mays*), os autores citam o uso de atrazina juntamente com herbicidas nicosulfurom, mesotriona e tembotriona, que geram controle satisfatório desta planta daninha.

É de suma importância que os agricultores adotem práticas sustentáveis de manejo de plantas daninhas e implementem estratégias preventivas para minimizar o desenvolvimento e a disseminação da resistência. Além disso, são necessárias pesquisas contínuas para entender melhor os mecanismos subjacentes à resistência da buva a herbicidas e desenvolver novas tecnologias e estratégias de controle. A colaboração entre pesquisadores, agricultores, empresas agrícolas e órgãos reguladores é fundamental para enfrentar esse desafio de forma eficaz e sustentável.

5. CONSIDERAÇÕES FINAIS

Os resultados dos tratamentos destacam a importância de escolher cuidadosamente os herbicidas e suas combinações para alcançar um controle satisfatório. O estudo evidencia que o uso de herbicidas associados, como glyphosate combinado com 2,4-D, chlorimuron ou atrazine, pode ser uma alternativa eficaz para o manejo dessa planta daninha. No entanto, é essencial ressaltar que o manejo eficaz vai além do uso de herbicidas, envolvendo práticas sustentáveis e preventivas por parte dos agricultores.

A colaboração entre diferentes partes interessadas, incluindo pesquisadores, agricultores, empresas agrícolas e órgãos reguladores, é crucial para enfrentar o desafio da resistência a herbicidas de maneira sustentável. Além disso, a continuidade da pesquisa para entender os mecanismos subjacentes à resistência e desenvolver novas tecnologias e estratégias de controle é fundamental para garantir a segurança e a viabilidade a longo prazo da agricultura.

6. REFERÊNCIAS

ADEGAS, F. S.; VARGAS, L.; GAZZIERO, D. L. P.; KARAM, D., SILVA, A. D.; AGOSTINETTO, D. Impacto econômico da resistência de plantas daninhas a herbicidas no Brasil. Brasil: Embrapa - Circular técnica, 2017. Disponível em: https://www.embrapa.br/busca-de-publicacoes/-/publicacao/1074026/impacto-economico-daresistencia-de-plantas-daninhas-a-herbicidas-no-brasil.

ALBRECHT, A.J.P.; ALBRECHT, L.P. **Mapeamento da buva (Conyza spp.) com resistência a herbicidas.** Comitê de Ação a Resistência aos Herbicidas – HRAC-BR, Informativo técnico, v. 2, 2021.

CHISTOFFOLETI, P. J.; LÓPEZ-OVEJERO, R. Principais aspectos da resistência de plantas daninhas ao herbicida glyphosate. **Planta Daninha**, v. 21 n. 3, p. 507-515, 2003.

DAUER, J. T., MORTENSEN, D. A., VANGESSEL, M. J. Dinâmica temporal e espacial da dispersão de sementes de *Conyza canadensis* a longa distância. **Journal of Applied Ecology**, v. 44, n.1, p. 105-114, 2007.

FONTELLES, M. J., SIMÕES, M. G., FARIAS, S. H.; FONTELLES, R. G. S. Metodologia da pesquisa científica: diretrizes para a elaboração de um protocolo de pesquisa. **Rev. para. Med**, v. 23, n. 3, p. 1-8, 2009.

KARAM, D.; SILVA, J. A. A.; GAZZIERO, D. C. L.; VARGAS, L. Embrapa Milho e Sorgo. Manejo químico de buva (*Conyza bonariensis*) pelo uso de herbicidas isolados e em mistura. Centro Universitário de Sete Lagoas, Minas Gerais. 2010.

LORENZI, H. **Manual de identificação e controle de plantas daninhas: plantio direto e convencional.** 7ª ed. Nova Odessa: Instituto Plantarum, 2014.

RIZZARDI, M. A.; VIDAL, R. A., FLECK, N. G.; AGOSTINETTO, D. Resistência de plantas aos herbicidas inibidores da acetolactato sintase. **Planta Daninha**, v.20, n. 1, p. 149–158, 2002.

SOCIEDADE BRASILEIRA DA CIÊNCIA DAS PLANTAS DANINHAS. **Procedimentos para instalação, avaliação e análise de experimentos com herbicidas.** Londrina: SBCPD, 1995.

VARGAS, L.; BIANCHI, M. A.; RIZZARDI, M. A; AGOSTINETTO, D., e DAL MAGRO, T. Buva (*Conyza bonariensis*) resistente ao glyphosate na região sul do Brasil. **Planta Daninha**, v. 25 n. 3, p v. 25 n. 3, p 573-578, 2007.

VARGAS, L.; GAZZIERO, D. L. P. **Manejo de Buva Resistente ao Glifosato.** Documentos 91, Passo Fundo – RS, v. 1, n. 1, p. 09 – 16, 2009.