

DESENVOLVIMENTO INICIAL DA CULTURA DA SOJA SUBMETIDA A DIFERENTES FORMULAÇÕES DE MACRONUTRIENTES

Brenda Sthephani Ferreira de Morais¹, Fernanda Roberta Piati¹, Gabriel Pelissaro Galeski¹, Hugo Marcos da Silva¹ Keumony Tochetto^{1*}, Luiza Maiara Timbola¹, Vitor Augusto Prior Cara¹, Karina Sanderson Adame¹

RESUMO

A soja (*Glycine max*) é uma das principais oleaginosas do mundo devido à sua importância econômica, sua produtividade depende do ambiente e do manejo, podendo ser melhorada com o uso de fertilizantes, que variam em composição e eficiência. Este trabalho teve como objetivo avaliar o desenvolvimento inicial da cultura da soja submetida a diferentes formulações de fertilizantes. O experimento foi conduzido em blocos casualizados com cinco tratamentos e cinco blocos, os tratamentos foram constituídos da seguinte forma: fertilizante nitrogenado, fertilizante fosfatado, fertilizante potássico, fertilizante NPK e testemunha. Aos 20 dias após a semeadura, foram avaliados o comprimento de raiz (cm), comprimento da parte aérea (cm) e taxa de emergência (%). Os dados com a suposição de normalidade aceita foram submetidos à análise de variância (ANOVA) e as médias comparadas pelo teste Tukey a 5 % de significância e os com a suposição de normalidade rejeitada utilizou-se o teste de Kruskal-Wallis. Conclui-se que as diferentes doses de fertilizante para avaliar os efeitos no desenvolvimento inicial da soja não influenciaram nos parâmetros comprimento de raiz, comprimento da parte aérea e germinação. Os fertilizantes potássico, NPK e a testemunha foram as que obtiveram as maiores taxas de germinação. Porém, todos os tratamentos obtiveram índices de germinação abaixo do padrão estabelecido para comercialização da soja.

PALAVRAS-CHAVE: Glycine max, Fertilizante, Nitrogênio, Potássio, Fósforo.

1. INTRODUÇÃO

A soja (*Glycine max*) é altamente valorizada globalmente e devido à sua significativa importância econômica está entre as principais oleaginosas produzidas no mundo. Os grãos da soja são utilizados na alimentação de animais, na indústria química e alimentícia, além de poderem ser empregados como biocombustível (SILVA *et al.*, 2009).

Conforme Gilioli *et al.* (1998), a produtividade da soja depende de dois fatores principais: o ambiente e o manejo. Visando aumentar o desempenho da cultura da soja, o uso de fertilizantes pode ser uma opção viável para o manejo. No mercado, existem diversos tipos de fertilizantes, com diferentes composições químicas, eficiências, granulometrias e nutrientes (FIORIN *et al.*, 2016).

Segundo Alovisi *et al.*, 2017, os fertilizantes solúveis liberam nutrientes rapidamente, atendendo às necessidades nutricionais das plantas de forma ágil. Portanto, é essencial buscar fertilizantes que contenham tanto macronutrientes quanto micronutrientes, além de serem economicamente viáveis. O nitrogênio (N) e o potássio (K) são os nutrientes mais demandados pela soja. No caso do nitrogênio, uma parte significativa é fornecida pelo solo (15 a 35%), enquanto a maior parte é obtida através da fixação simbiótica do N₂ atmosférico (65 a 85%). Embora o fósforo (P) seja o menos absorvido entre os três macronutrientes, ele é utilizado em maior quantidade nas adubações, pois grande parte permanece em formas indisponíveis para as plantas (OLIVEIRA *et al.*, 2017).

A composição química das sementes de soja, assim como seu vigor e metabolismo, está intimamente relacionada à disponibilidade de nutrientes. Assim, um fornecimento adequado de nutrientes é fundamental para o desenvolvimento saudável da planta, permitindo a produção de metabólitos essenciais para o crescimento das sementes e frutos (MONTEIRO *et al.*, 2015).

Tanto o nitrogênio (N) como o potássio (K) são os nutrientes mais exigidos pela soja, no caso do N, grande parte é suprida pelo solo (15 a 35%) e a outra parte pela fixação simbiótica de N2 atmosférico (65 a 85 %). Apesar do fósforo (P) ser o menos extraído entre os três macronutrientes, nas adubações é utilizado em maior quantidade em virtude de grande parte ficar na forma indisponível para as plantas (OLIVEIRA et al.,2017). A composição química da semente da soja, o vigor e metabolismo está diretamente ligado à disponibilidade de nutrientes, sendo assim, o fornecimento adequado de nutrientes proporciona melhor desenvolvimento da planta, possibilitando a produção de metabólitos necessários para o desenvolvimento das sementes e frutos. (MONTEIRO et al., 2015).

Assim, o objetivo deste estudo foi avaliar o desenvolvimento inicial da cultura da soja submetida a diferentes fontes de fertilizantes de nitrogênio, fósforo, potássio e NPK, com o intuito de identificar a dose ideal que possibilite um melhor aproveitamento dos nutrientes pela planta durante sua fase inicial de crescimento.

¹Instituição: Centro Universitário da Fundação Assis Gurgacz E-mail: ktochetto@minha.fag.edu.br

2. MATERIAL E MÉTODOS

O experimento foi implantado em uma propriedade rural, no município de Céu Azul - PR, nos meses de março a maio de 2025. O clima é do tipo subtropical mesotérmico super úmido, apresentando temperatura média anual de 19° C, precipitação anual média de 2000 mm e umidade relativa média anual do ar entre 75 a 81%, em solo classificado como Latossolo Vermelho Distrófico, o qual caracteriza o solo da região (EMBRAPA, 2009).

O delineamento foi em blocos casualizados, com cinco tratamentos e cinco blocos, totalizando 25 parcelas. Os tratamentos foram constituídos da seguinte forma: T1: fertilizante nitrogenado (5g/5,6 dm³); T2: fertilizante fosfatado (5g/5,6 dm³); T3: fertilizante potássico (5g/5,6 dm³); T4: fertilizante NPK (5g/5,6 dm³) e T5: testemunha (sem adição de fertilizante). Foi realizada a semeadura das sementes em vasos, de forma manual, os quais foram dispersos com a utilização de sorteio para a casualização. Em cada vaso foi semeado cinco sementes de soja, no qual não foi feito desbaste após a germinação, pois elas estavam dispostas aleatoriamente apresentando um total de 25 sementes por tratamento. Os fertilizantes correspondentes a cada tratamento foram adicionados aos vasos via sulco. A irrigação das plantas foi realizada regularmente para manter o solo em condição adequada de umidade.

O experimento foi conduzido com semente de soja (*Glycine max*), cultivar NEO610 IPRO da Neogen. Esta cultivar apresenta excelente adaptação a ambientes de alto potencial produtivo e resistência à podridão radicular de *Phytophthora*. Os fertilizantes utilizados foram o NPK (10-15-15), superfosfato simples (P_2O_5), cloreto de potássio (KCl) 60% e ureia (CH₄N₂O) 45%, todos da marca Coopavel.

Aos 20 dias após a semeadura as plantas foram cuidadosamente removidas dos vasos e foram avaliados os seguintes parâmetros: comprimento de raiz (cm), comprimento da parte aérea (cm) e taxa de emergência (%).

As análises estatísticas dos dados obtidos foram realizadas de acordo com o modelo matemático apropriado para o delineamento adotado. Para avaliar a normalidade utilizou-se o teste de Shapiro-Wilk. Os dados com a suposição de normalidade aceita foram submetidos à análise de variância (ANOVA) e as médias comparadas pelo teste Tukey a 5 % de significância e os com a suposição de normalidade rejeitada utilizou-se o teste de Kruskal-Wallis e as médias foram agrupadas pelo teste de Scott-Knott ao nível de 5% de probabilidade. Foi utilizado o programa computacional ActionStat®, versão 2.4 maio/2012.

3. RESULTADOS E DISCUSSÃO

O teste de normalidade de Shapiro-Wilk a 5%, não apresentou normalidade para o comprimento da parte aérea e taxa de germinação (p<0,01). Para o comprimento radicular os dados seguem uma distribuição normal (p=0,3803). Os p-valores a 5% de significância, em relação análise de variância dos dados por meio do teste F para os parâmetros comprimento de raiz e comprimento da parte aérea, não apresentaram diferença significativa (p>0,05) para os diferentes fertilizantes e a média geral foi de 8,64 cm e 10,08 cm, respectivamente, como mostra a Tabela 1.

Tabela 1 - Média do comprimento de raiz (cm) e comprimento da parte aérea (cm).

Fertilizantes	C.R	C.PA
(5 g por vaso)	(cm)	(cm)
Nitrogenado	6,50 a	9,00 a
Fosfatado	7,84 a	10,40 a
Potássico	9,49 a	12,80 a
NPK	9,60 a	11,00 a
Testemunha	9,76 a	7,20 a
C.V. (%)	33,23	39,48
Shapiro Wilk	0,3803	0,01
p-valor ANOVA	0,3366 ^{ns}	-
p-valor Kruskal-Wallis	-	0,2768 ^{ns}

CV%: Coeficiente de variação; C.R.: comprimento radicular; C.PA.: Comprimento parte aérea **: significativo ao nível de 1% de probabilidade de erro. ns.: não significativo ao nível de 5% de probabilidade de erro. Médias seguida de mesma letra na coluna não diferem entre si.

O coeficiente de variação para o comprimento radicular (33,23%) e para o comprimento da parte aérea (39,48%) foram muito alto. Essa classificação segue a proposta por Pimentel-Gomes (1985), na qual o coeficiente de variação é considerado baixo quando inferior a 10%; médio, entre 10 e 20%; alto, quando entre 20 e 30%; e muito alto, quando superior a 30%.

De acordo com Sfredo (2008), a cultura da soja é muito exigente em macro e micronutrientes, assim é necessário que os nutrientes essenciais estejam presentes no solo de forma equilibrada, sendo importante dar atenção a práticas como calagem e adubação, as quais podem ser realizadas de forma satisfatória quando embasadas em análise do solo, principalmente, e a análise foliar, como ferramenta complementar.

Dentre os nutrientes minerais essenciais, o mais requerido pela cultura é o nitrogênio (N), contudo, é um macronutriente de grande mobilidade no solo, tornando a eficiência de sua aplicação via fertilizante muito contestada (COSTA *et al.*, 2009). Diversos trabalhos nas últimas décadas abordaram a capacidade da FBN em suprir toda a demanda de N para a cultura da soja. Para Mendes *et al.* (2003) não há necessidade de adubação nitrogenada complementar para a cultura da soja. Em contrapartida, Gan *et al.* (2003) apontam para uma necessidade de se fazer adubação complementar. Os diferentes resultados apontam para um efeito de condições edafoclimáticas específicas para cada região.

Na Figura 1 são expostos os resultados obtidos das médias da taxa de germinação em relação aos diferentes fertilizantes. É possível verificar que houve diferenças estatísticas entre as dosagens utilizadas.

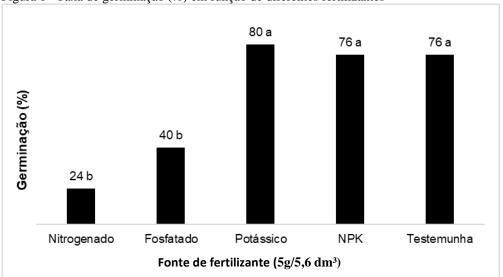


Figura 1– Taxa de germinação (%) em função de diferentes fertilizantes

Os fertilizantes potássico, NPK e a testemunha foram as que obtiveram as maiores taxas de germinação 80%, 76% e 76% respectivamente, não diferindo estatisticamente entre elas. Porém, todos os tratamentos obtiveram índices de germinação abaixo do padrão estabelecido para comercialização da soja, onde a taxa mínima para germinação é de 85 % (BRASIL, 2009).

4. CONCLUSÃO

Conclui-se que as diferentes doses de fertilizante para avaliar os efeitos no desenvolvimento inicial de soja não influenciaram nos parâmetros comprimento de raiz e comprimento da parte aérea. Em relação a taxa de germinação, observou-se que houve diferenças estatísticas entre as dosagens utilizadas. Os fertilizantes potássico, NPK e a testemunha foram as que obtiveram as maiores taxas de germinação. Porém, todos os tratamentos obtiveram índices de germinação abaixo do padrão estabelecido para comercialização da soja.

5. REFERÊNCIAS

ALOVISI, A. M. T.; FRANCO, D.; ALOVISI, A. A.; HARTMANN, C. F.; TOKURA, L. K.; SILVA, R. S. Atributos de fertilidade do solo e produtividade de milho e soja influenciados pela rochagem. II **Seminário de Engenharia de Energia na Agricultura Acta Iguazu**. v. 6, n. 5, p. 57-68, 2017.

BRASIL. MINISTÉRIO DA AGRICULTURA, PECUÁRIA E ABASTECIMENTO. Regras para análise de sementes. Secretaria de Defesa Agropecuária. Brasília,DF: MAPA/ACS, 395 p., 2009.

COSTA, R. S. S.; ARF, O.; ORIOLI JUNIOR, V.; BUZETTI, S. População de plantas e nitrogênio para feijoeiro cultivado em sistema de plantio direto. **Revista Caatinga**, Mossoró, v. 22, n. 4, p. 39-45, 2009.

EMBRAPA. EMPRESA BRASILEIRA DE PESQUISA AGROPECUÁRIA, Centro nacional de pesquisa de solos. **Sistema brasileiro de classificação do solo**. Brasília, EMBRAPA produção de informações, 2009.

GAN, Y.; STULEN, I.; KEULEN, H. V.; KUIPER, P. J.C. Efeito da aplicação de fertilizante nitrogenado em cobertura em vários estágios reprodutivos sobre o crescimento, a fixação de N2 e a produtividade de três genótipos de soja (Glycine max (L.) Merrill.). **Field Crops Research**, Warwick, v. 80, n. 2, p. 147-155, 2003.

GILIOLI, J. L.; TERASAWA, F.; WILLEMANN, W.; ARTIAGA, O. P. MOURA, E. A. V.; PEREIRA. W. V. **Soja: Série 100**. FT Sementes, Cristalina, Goiás. 18 p. 1995.

FERREIRA, C. A. W. et al., **Desenvolvimento inicial da soja em função da utilização de diferentes doses de npk.** AGRARIAN ACADEMY, Centro Científico Conhecer - Goiânia, v.5, n.9; p. 169, 2018.

FIORIN, J. E.; VOGEL, P. T; BORTOLLOTO, R. P. Métodos de aplicação e fontes de fertilizantes para a cultura da soja. **Agrária - Revista Brasileira de Ciências Agrárias**. v.11, n.2, p.92-97, 2016.

MENDES, I. C.; HUNGRIA, M.; VARGAS, M. A. Resposta da soja à inoculação de nitrogênio inicial e Bradyrhizobium em um latossolo de Cerrado sob sistemas de plantio direto e convencional. **Revista Brasileira de Ciência do Solo**, n. 27, p. 81-87, 2003.

MONTEIRO, A. N. L.; ALVES, J. M. A.; MATOS. W. S.; SILVA. M. R.; SILVA. D. L.; BARRETO. G. F. Densidade de plantas e doses de NPK nos componentes de produção de soja-hortaliça na Savana de Roraima. **Revista Agro@mbiente On-line**. v. 9, n. 4, p. 352-360, outubro-dezembro, 2015.

OLIVEIRA, J. G.; SILVA, V. S. G.; COSTA. J. P. V. Comportamento de soja submetida a materiais fertilizantes e inoculação com *bradyrhizobium*. **Revista da Universidade Vale do Rio Verde**, Três Corações. v. 15, n. 1, p. 66-72, jan./jul. 2017.

PIMENTEL-GOMES, F. Curso de Estatística Experimental. 12. ed. Piracicaba: Livraria Nobel, 467p., 1985.

SFREDO, G. J. **Soja no Brasil:calagem, adubação e nutrição mineral**. Documento 305 da Embrapa Soja. Londrina, 148p., 2008.

SILVA, A. F. et al. Período anterior à interferência na cultura da soja-RR em condições de baixa, média e alta infestação. **Planta Daninha**, v. 27, n. 1, p. 57-66, 2009.